Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation
نویسندگان
چکیده
Stable nitritation is a critical bottleneck for achieving autotrophic nitrogen removal using the energy-saving mainstream deammonification process. Herein we report a new strategy to wash out both the Nitrospira sp. and Nitrobacter sp. from the treatment of domestic-strength wastewater. The strategy combines sludge treatment using free nitrous acid (FNA) with dissolved oxygen (DO) control in the nitritation reactor. Initially, the nitrifying reactor achieved full conversion of NH4(+) to NO3(-). Then, nitrite accumulation at ~60% was achieved in the reactor when 1/4 of the sludge was treated daily with FNA at 1.82 mg N/L in a side-stream unit for 24 h. Fluorescence in-situ hybridization (FISH) revealed FNA treatment substantially reduced the abundance of nitrite oxidizing bacteria (NOB) (from 23.0 ± 4.3 to 5.3 ± 1.9%), especially that of Nitrospira sp. (from 15.7 ± 3.9 to 0.4 ± 0.1%). Nitrite accumulation increased to ~80% when the DO concentration in the mainstream reactor was reduced from 2.5-3.0 to 0.3-0.8 mg/L. FISH revealed the DO limitation further reduced the abundance of NOB (to 2.1 ± 1.0%), especially that of Nitrobacter sp. (from 4.9 ± 1.2 to 1.8 ± 0.8%). The strategy developed removes a major barrier for deammonification in low-strength domestic wastewater.
منابع مشابه
Biological Nitrogen Removal through Nitritation Coupled with Thiosulfate-Driven Denitritation
A novel biological nitrogen removal system based on nitritation coupled with thiosulfate-driven denitritation (Nitritation-TDD) was developed to achieve a high nitrogen removal rate and low sludge production. A nitritation sequential batch reactor (nitritation SBR) and an anoxic up-flow sludge bed (AnUSB) reactor were applied for effective nitritation and denitritation, respectively. Above 75% ...
متن کاملThe Deammonification Process in Moving Bed Biofilm Reactors
Reference should be written as: " Yang, J. (2016). The deammonification process in moving bed biofilm reactors. PhD thesis. TRITA LWR PHD-2016:05 ". SUMMARY In order to decrease the risk of eutrophication in natural water bodies, the requirements for wastewater treatment plants' (WWTPs) discharge has become stricter than previously. Around 15-20% of the nitrogen load in the mainstream comes fro...
متن کاملA two pathway model for N2O emissions by ammonium oxidizing bacteria supported by the NO/N2O variation.
In this work, a new model for nitritation combining two N2O emission pathways was confronted with both NO and N2O measurements during nitrification. The model was calibrated with batch experiments and validated with long-term data collected in a sequencing batch reactor (SBR). A good prediction of the evolution of N2O emissions for a varying level of nitrite was demonstrated. The NO/N2O ratio w...
متن کاملWST 50.10 J07 corr
In wastewater treatment plants with anaerobic sludge digestion, 15–20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic ...
متن کاملTreatment of old landfill leachate with high ammonium content using aerobic granular sludge
Background Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using ae...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016